aza-Cope-Mannich reaction for stereocontrolled alkaloid construction.

Acknowledgment. Support of this research by a Javita Neuroscience Investigator Award (NS-12389) is gratefully acknowledged. NMR and mass spectra were determined at UCI with spectrometers acquired with the assistance of **NSF** Shared Instrumentation Grants. We particularly thank **Dr.** Henry M. Fales (NIH) for a sample of natural pancracine.

Marked Leaving Group Strain in (Z)-2-Ethylidenebicyclo[2.2.2]0ct-l-y1 Triflate and Its Significant Relief in (2)-2-Ethylidenebicyclo[3.2.2lnon-1-yl Mesylate

Ken'ichi Takeuchi,* Yasushi Ohga, and Toshikazu Kitagawa

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan Received April 22, 1991

Summary: The rate of ethanolysis at 25 °C of (Z) -2**ethylidenebicyclo[2.2.2]0ct-l-y1** txiflate *[(2)-3]* is 217 times faster than that of its *E* isomer, whereas more flexible **(2)-2-ethylidenebicyc10[3.2.2]non-l-y1** mesylate solvolyzes 3.4 times slower than its E isomer, indicating marked leaving-group strain in the ground state of *(23-3,* which is supported by MM2 calculations.

In the ionization of a crowded molecule $(R)_{\alpha}CX$, both the back strain (B-strain) among the three alkyl groups and the front strain (F-strain) between the leaving group X and the alkyl groups are relieved, resulting in enhancement of solvolysis rates (Scheme I).^{1,2} These phenomena have constituted one of the major subjecta in computational chemistry. $2,3$

In principle, when the **R** groups are made bulkier, not only B-strain but also F-strain increases.²⁷ Moreover, ionization may well cause **an** increase in strain between alkyl groups resulting from shortening of the C+-C bond in the carbocation.^{2j,4} Therefore, the rate enhancement solely due to F-strain is generally difficult to realize. Changing the size of the leaving group X in $(R)_{3}CX$ with varying sizes of the R group achieved considerable suc-
cess.^{2b.h.i} However, concomitant differential change in solvation should always be taken into account.^{2 ϵ ,⁵ Pre-} viously, the tosylate leaving group was suggested to cause greater F-strain than the bromide in bridgehead derivatives, 6 but this was questioned by recent calculations.^{3a} The most straightforward approach would be to design a system that shows a dramatic reactivity change upon

(3) (a) Mllller, P.; Blanc, J.; **Mareda,** J. *Helu. Chim. Acta* 1986,69,635. **(b) Mllller,** P.; Mareda, J. *Helu. Chim. Acta* 1987, 70,1017. (c) **MUer,** P.; Blanc, J.; Mareda, J. *Chimia* 1987,41, **399.**

(4) OLh, **G. A.;** Rakaeh, **0.** K. **8.;** Knehnam urti, **R** *J. Am. Chem.* **Soc.** 1990, 112, 6422.

(6) Tidwell, T. T. *J. Org. Chem.* 1974,39, 3633. **(6)** Bingham, **R.** C.; Schleyer, P. v. **R.** J. *Am. Chem. SOC.* 1971, **93,** 3189.

Scheme I $\begin{pmatrix} R_1 \\ 1 \\ 1 \end{pmatrix}$
c = x

minimum structural modification with the B-strain and the leaving group being unchanged. In this context, the most unambiguous case reported so far would be the finding that *trans,trans,trans-perhydro-9b-phenalyl p*nitrobenzoate (1-OPNB) solvolyzes 2860 times faster than truns-Q-decalyl p-nitrobenzoate (2-OPNB) **in** 80% acetone at 25 **"C.%** Since the rate enhancement essentially vanishea in the chloride 1-Cl, the major F-strain in 1-OPNB has been postulated to exist between the carbonyl group (and/or the aryl group) and the ring system. $2c,3c$

We now report another clear-cut example. The structural modification employed in the present study is much simpler than annulation of 2-OPNB leading to 1-OPNB. We compared the rates of ethanolysis between **(2)-2** ethylidenebicyclo $[2.2.2]$ oct-1-yl triflate $[(Z)$ -3], the E isomer *[(E)-3],* and the 2-methylene homologue **4.'** For a comparison, *(23-* and **(E)-2-ethylidenebicycl0[3.2.2]non-l-y1**

⁽¹⁾ For reviews, **eae: (a)** Tidwell, T. T. *Tetrahedron* 1978,34,1856.

⁽b) Stirling, C. J. M. Tetrahedron 1985, 41, 1613.

(2) (a) Brown, H. C.; Fletcher, R. S. J. Am. Chem. Soc. 1949, 71, 1845.

(b) Brown, H. C.; Stern, A. J. Am. Chem. Soc. 1950, 72, 5068. (c) Slutaky,

J.; Bingham, R. C.; S J. S.; Sagatye, **D.** S.; **Duboii,** J.-E. *Tetrahedron Lett.* 1973, 1791. (h) **Loman,** J. **8.;** Luong, P. K.; **Duboii,** J.-E. J. *Am. Chem.* **Soc.** 1977,99, Lomas, J. S.; Luong, P. K.; Dubois, J.-E. *J. Am. Chem. Soc.* 1977, 99, 5478. (i) Lomas, J. S.; Luong, P. K.; Dubois, J.-E. *J. Am. Chem. Soc.* 1977, 99, 44, 1647. (j) Lomas, J. S. Nouv. J. Chim. 1984, 8, 365. (k) Sliwinski, W.
F.; Su, T. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 133. (l) Fry, J. L.; Engler, E. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 133 (m) Faulkner, D.; McKervey, M. A.; Lenoir, D.; Senkler, C. A.; Schleyer, P. v. R. Tetrahedron Lett. 1973, 705. (n) Farcasiu, D. J. Org. Chem. 1978, 43, 3878. (o) Lenoir, D.; Frank, R. M. Chem. Ber. 1981, 114, 3336.

 (7) The new substrates (Z) -3, (E) -3, (Z) -5, and (E) -5 were prepared as follows. A Wittig ethylidenation⁸ of the *tert*-butyldimethylsilyl (BDMS) ether of 1-hydroxybicyclo[2.2.2]octan-2-one⁹ afforded solely (Z)-3-OBDMS as an oil in 85% yield, which on olefin inversion by the phosphorus betaine method¹⁰ gave (E)-3-OBDMS as an oil in 69% yield. In a similar Wittig ethylidenation of the BDMS ether of 1-hydroxybicyclo-
[3.2.2]nonan-2-one⁹¹¹ were isolated (Z)-4-OBDMS and (E)-4-OBDMS in 16% and 22% yields, respectively. The Z and E configurations were based on ¹H NMR NOE difference experiments: on irradiation of the olefinic proton, Z isomers showed NOEs on both the methyl and $C(3)$ protons, whereas E isomers showed NOEs on only the methyl protons.
The BDMS ethers were desilylated by treatment with tetrabutyl-
ammonium fluoride in THF and then converted to triflates or mesylates. The only impurity was the corresponding alcohol. The 2-methylene homolgoues 4 and 6 were described previously.⁹
(8) Greenwald, R.; Chaykovsky, M.; Corey, E. J. *J. Org. Chem.* **1963**,

^{28,} 1128.

^a In the presence of 0.025 M 2,6-lutidine. ^bAll new compounds showed spectral data consistent with the proposed structures. ^cOil. d Determined conductimetrically. "Determined titrimetrically. *'Extrapolated from data at other temperatures.* "Reference 9.

mesylates and the 2-methylene homologue $[(Z)-5, (E)-5,$ and 6, respectively] were also subjected to rate studies.⁷ All the substrates gave exclusively the corresponding bridgehead ethyl ethers. The ethanolysis rate data are summarized in Table I.

The rate of ethanolysis of (Z) -2-ethylidenebicyclo- $[2.2.2]$ oct-1-yl triflate $[(Z)-3]$ is 217 times faster than that of the E isomer $[(E)-3]$ at 25 °C. In contrast, the more flexible substrate (Z)-2-ethylidenebicyclo[3.2.2]non-1-yl mesylate $[(Z)-5]$ solvolyzes 3.4 times slower than the E isomer $[(E)-5]$ in ethanol at 25 °C.

Previously, we reported that allylic conjugation is essentially prohibited in the incipient carbocation from 2methylenebicyclo[2.2.2]oct-1-yl triflate (4) for geometric reasons.⁹ We attribute a major part of the enhanced rate for (Z) -3 as compared with (E) -3 to the relief of F-strain between the (Z)-methyl substituent and the leaving group. Semiempirical molecular orbital calculations (AM1)¹² on bridgehead carbocations (Z) -3⁺ and (E) -3⁺ indicated that charge delocalization is similar in the two cations, being slightly smaller in the former: the net atomic charge on the cationic carbon is 0.403 for (Z) -3⁺ and 0.402 for (E) -3⁺. On the other hand, molecular mechanics calculations [MM2(87)]¹³ on bridgehead alcohols (Z) -3-OH and (E) -3-OH as surrogates for the triflates showed that the former is more strained than the latter by 2.5 kcal/mol. About 80% of this energy is explicable in terms of the sum of repulsion between the (Z) -methyl group and the oxygen atom and thereby induced deformation of the skeleton. Since the freely rotating CF_3SO_2 moiety is not expected to seriously interact with the (Z)-methyl group, the origin of the F-strain in (Z) -3 is most probably attributed to the repulsion between the (Z) -methyl group and the ether oxygen atom on the bridgehead position. This presents a striking contrast to the previously reported system 1-OPNB, where the ether oxygen atom is unimportant with respect to the F-strain.^{2c}

In the more flexible 2-ethylidenebicyclo[3.2.2]non-1-yl system, the (Z) -5/ (E) -5 rate ratio is 0.30, which should be compared with the $(Z)-3/(E)-3$ rate ratio of 217 for the rigid 2-ethylidenebicyclo[2.2.2]oct-1-yl system. This striking contrast reveals the importance of a rigid structure and coplanar arrangement of the methyl group and the reaction center for exerting the F-strain. Molecular mechanics calculations $[MM2(87)]^{13}$ showed that (Z)-5-OH is slightly more strained than (E) -5-OH by only 0.3 kcal/mol. Apparently, F-strain is markedly reduced in (Z) -5. Interestingly, AM1 calculations¹² indicated that the positive charge of (E) -5⁺ is conjugatively more delocalized than that of (Z) -5⁺: the net atomic charge on the cationic carbon is 0.353 for (E) -5⁺ and 0.363 for (Z) -5⁺. This might be partly responsible for the faster rate for (E) -5 than for (Z) -5. The much faster rates for (Z) -5 and (E) -5 than for 6 are explicable in terms of enhancement of allylic conjugation by the methyl substituent.¹⁴

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, and a grant from the Asahi Glass Foundation.

Supplementary Material Available: ¹³C NMR spectra for new substrates and ¹³C NMR spectra, analytical data, and melting points for their precursor alcohols (9 pages). Ordering information is given on any current masthead page.

⁽⁹⁾ Takeuchi, K.; Akiyama, F.; Ikai, K.; Shibata, T.; Kato, M. Tetrahedron Lett. 1988, 29, 873.

neuron Lett. 1966, 25, 010.

(10) Vedejs, E.; Fuchs, P. L. J. Am. Chem. Soc. 1973, 95, 822.

(11) Takeuchi, K.; Kitagawa, I.; Akiyama, F.; Shibata, T.; Kato, M.;

Okamoto, K. Synthesis 1987, 612.

(12) Calculated through t

⁽¹³⁾ Obtained from QCPE.

⁽¹⁴⁾ We have previously shown that the allylic conjugation is approximately 50% attained in the incipient carbocation from 6.