aza-Cope-Mannich reaction for stereocontrolled alkaloid construction.

Acknowledgment. Support of this research by a Javits Neuroscience Investigator Award (NS-12389) is gratefully acknowledged. NMR and mass spectra were determined at UCI with spectrometers acquired with the assistance of NSF Shared Instrumentation Grants. We particularly thank Dr. Henry M. Fales (NIH) for a sample of natural pancracine.

Marked Leaving Group Strain in (Z)-2-Ethylidenebicyclo[2.2.2]oct-1-yl Triflate and Its Significant Relief in (Z)-2-Ethylidenebicyclo[3.2.2]non-1-yl Mesylate

Ken'ichi Takeuchi.* Yasushi Ohga, and Toshikazu Kitagawa

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan Received April 22, 1991

Summary: The rate of ethanolysis at 25 °C of (Z)-2ethylidenebicyclo [2.2.2] oct-1-vl triflate [(Z)-3] is 217 times faster than that of its E isomer, whereas more flexible (Z)-2-ethylidenebicyclo[3.2.2]non-1-yl mesylate solvolyzes 3.4 times slower than its E isomer, indicating marked leaving-group strain in the ground state of (Z)-3, which is supported by MM2 calculations.

In the ionization of a crowded molecule $(R)_3CX$, both the back strain (B-strain) among the three alkyl groups and the front strain (F-strain) between the leaving group X and the alkyl groups are relieved, resulting in enhancement of solvolysis rates (Scheme I).^{1,2} These phenomena have constituted one of the major subjects in computational chemistry.^{2,3}

In principle, when the R groups are made bulkier, not only B-strain but also F-strain increases.^{2f} Moreover, ionization may well cause an increase in strain between alkyl groups resulting from shortening of the C^+-C bond in the carbocation.^{2j,4} Therefore, the rate enhancement solely due to F-strain is generally difficult to realize. Changing the size of the leaving group X in $(R)_3CX$ with varying sizes of the R group achieved considerable success.^{2b,h,i} However, concomitant differential change in solvation should always be taken into account.^{2g,5} Previously, the tosylate leaving group was suggested to cause greater F-strain than the bromide in bridgehead derivatives,⁶ but this was questioned by recent calculations.^{3a} The most straightforward approach would be to design a system that shows a dramatic reactivity change upon

(3) (a) Müller, P.; Blanc, J.; Mareda, J. Helv. Chim. Acta 1986, 69, 635.
 (b) Müller, P.; Mareda, J. Helv. Chim. Acta 1987, 70, 1017. (c) Müller,
 P.; Blanc, J.; Mareda, J. Chimia 1987, 41, 399.

(4) Olah, G. A.; Prakash, G. K. S.; Krishnamurti, R. J. Am. Chem. Soc. 1990, 112, 6422.

 (6) Tidwell, T. T. J. Org. Chem. 1974, 39, 3533.
 (6) Bingham, R. C.; Schleyer, P. v. R. J. Am. Chem. Soc. 1971, 93, 3189.

Scheme I Х R, R₃

minimum structural modification with the B-strain and the leaving group being unchanged. In this context, the most unambiguous case reported so far would be the finding that trans, trans, trans-perhydro-9b-phenalyl pnitrobenzoate (1-OPNB) solvolyzes 2860 times faster than trans-9-decalvl p-nitrobenzoate (2-OPNB) in 80% acetone at 25 °C.^{2c} Since the rate enhancement essentially vanishes in the chloride 1-Cl, the major F-strain in 1-OPNB has been postulated to exist between the carbonyl group (and/or the aryl group) and the ring system.^{2c,3c}

We now report another clear-cut example. The structural modification employed in the present study is much simpler than annulation of 2-OPNB leading to 1-OPNB. We compared the rates of ethanolysis between (Z)-2ethylidenebicyclo[2.2.2]oct-1-yl triflate [(Z)-3], the E isomer [(E)-3], and the 2-methylene homologue 4.⁷ For a comparison, (Z)- and (E)-2-ethylidenebicyclo[3.2.2]non-1-yl

⁽¹⁾ For reviews, see: (a) Tidwell, T. T. Tetrahedron 1978, 34, 1855.

For reviews, see: (a) Tidwell, T. T. Tetrahedron 1978, 34, 1855.
 (b) Stirling, C. J. M. Tetrahedron 1985, 41, 1613.
 (2) (a) Brown, H. C.; Fletcher, R. S. J. Am. Chem. Soc. 1949, 71, 1845.
 (b) Brown, H. C.; Stern, A. J. Am. Chem. Soc. 1950, 72, 5068. (c) Slutsky, J.; Bingham, R. C.; Schleyer, P. v. R.; Dickason, W. C.; Brown, H. C. J. Am. Chem. Soc. 1974, 96, 1969. (d) Bartlett, P. D.; Tidwell, T. T. J. Am. Chem. Soc. 1955, 77, 2806. (e) Bartlett, P. D.; Tidwell, T. T. J. Am. Chem. Soc. 1958, 90, 4421. (f) Cheng, P.-T.; Nyburg, S. C.; Thankachan, C.; Tidwell, T. T. Angew. Chem., Int. Ed. Engl. 1977, 16, 654. (g) Lomas, J. S.; Sagatys, D. S.; Dubois, J.-E. Tetrahedron Lett. 1973, 1791. (h) Comma. J. S.; Liong, P. K.; Dubois, J. E. J. Am. Chem. Soc. 1977, 99 S. Sagatys, D. S.; Dubois, J.-E. *Tetrinedron Lett.* 1973, 1191. (n)
 Lomas, J. S.; Luong, P. K.; Dubois, J.-E. J. Am. Chem. Soc. 1977, 99,
 5478. (i) Lomas, J. S.; Luong, P. K.; Dubois, J.-E. J. Org. Chem. 1979,
 44, 1647. (j) Lomas, J. S. Nouv. J. Chim. 1984, 8, 365. (k) Sliwinski, W.
 F.; Su, T. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 133. (l) Fry. J. L.; Engler, E. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 133. (1) Fry.
 J. L.; Engler, E. M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972, 94, 4628.
 (m) Faulkner, D.; McKervey, M. A.; Lenoir, D.; Senkler, C. A.; Schleyer,
 P. v. R. Tetrahedron Lett. 1973, 705. (n) Farcasiu, D. J. Org. Chem. 1978, 43, 3878. (o) Lenoir, D.; Frank, R. M. Chem. Ber. 1981, 114, 3336.
 (a) Mullen P. Blane L. Marcha J. Hub. Chem. Soc. 2007.

⁽⁷⁾ The new substrates (Z)-3, (E)-3, (Z)-5, and (E)-5 were prepared as follows. A Wittig ethylidenation⁶ of the tert-butyldimethylsilyl (BDMS) where of 1-hydroxybicyclo[2.2.2]octan-2-one⁹ afforded solely (2)-3-OBDMS as an oil in 85% yield, which on olefin inversion by the phos-phorus betaine method¹⁰ gave (E)-3-OBDMS as an oil in 69% yield. In a similar Wittig ethylidenation of the BDMS ether of 1-hydroxybicyclo-[3.2.2]nonan-2-one^{9,11} were isolated (Z)-4-OBDMS and (E)-4-OBDMS in [3.2.2]nonan-2-one^{3,1} were isolated (Z)-4-OBDMS and (E)-4-OBDMS in 16% and 22% yields, respectively. The Z and E configurations were based on ¹H NMR NOE difference experiments: on irradiation of the olefinic proton, Z isomers showed NOEs on both the methyl and C(3) protons, whereas E isomers showed NOEs on only the methyl protons. The BDMS ethers were desilylated by treatment with tetrabutyl-ammonium fluoride in THF and then converted to triflates or mesylates. The only impurity was the corresponding alcohol. The 2-methylene (8) Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963,

^{28, 1128.}

		• • • •		• – – – – – – – – – – – – – – – – – – –				
compd ^b		temp, °C	k, s ⁻¹	ΔH^* , kcal/mol	ΔS^* , eu	rel rates at 25 °C		
	(Z)-3°	25.0	4.04×10^{-4d}	23.8	5.6	1365	217	
	• •	40.0	$2.89 \times 10^{-3 d}$					
	$(E)-3^{c}$	25.0	1.86×10^{-6e}	26.8	5.1	6.3	1	
		50.0	6.65×10^{-5}					
	4	25.0	$2.96 \times 10^{-7/s}$	27.1	2.3	1		
		50.0	1.09×10^{-5} e.g					
		75.0	2.40×10^{-4} e.s					
	(Z)-5°	25.0	5.49 × 10 ^{-4 d}	23.2	4.3	77	0.30	
		40.0	3.76×10^{-3d}					
	$(E)-5^{\circ}$	25.0	1.86×10^{-3d}	21.6	1.3	25 9	1	
		40.0	1.11×10^{-2d}					
	64	25.0	7.17 × 10 ⁻⁶ **	24.3	-0.4	1		
		50.0	1.86×10^{-4} es					

^a In the presence of 0.025 M 2,6-lutidine. ^bAll new compounds showed spectral data consistent with the proposed structures. ^cOil. ^dDetermined conductimetrically. ^eDetermined titrimetrically. ^fExtrapolated from data at other temperatures. ^eReference 9.

mesylates and the 2-methylene homologue [(Z)-5, (E)-5, (E)-5]and 6, respectively] were also subjected to rate studies.⁷ All the substrates gave exclusively the corresponding bridgehead ethyl ethers. The ethanolysis rate data are summarized in Table I.

The rate of ethanolysis of (Z)-2-ethylidenebicyclo-[2.2.2] oct-1-yl triflate [(Z)-3] is 217 times faster than that of the E isomer [(E)-3] at 25 °C. In contrast, the more flexible substrate (Z)-2-ethylidenebicyclo[3.2.2]non-1-yl mesylate [(Z)-5] solvolyzes 3.4 times slower than the E isomer [(E)-5] in ethanol at 25 °C.

Previously, we reported that allylic conjugation is essentially prohibited in the incipient carbocation from 2methylenebicyclo[2.2.2]oct-1-yl triflate (4) for geometric reasons.⁹ We attribute a major part of the enhanced rate for (Z)-3 as compared with (E)-3 to the relief of F-strain between the (Z)-methyl substituent and the leaving group. Semiempirical molecular orbital calculations (AM1)¹² on bridgehead carbocations (Z)-3⁺ and (E)-3⁺ indicated that charge delocalization is similar in the two cations, being slightly smaller in the former: the net atomic charge on the cationic carbon is 0.403 for (Z)-3⁺ and 0.402 for (E)-3⁺. On the other hand, molecular mechanics calculations $[MM2(87)]^{13}$ on bridgehead alcohols (Z)-3-OH and (E)-3-OH as surrogates for the triflates showed that the former is more strained than the latter by 2.5 kcal/mol. About 80% of this energy is explicable in terms of the sum of repulsion between the (Z)-methyl group and the oxygen atom and thereby induced deformation of the skeleton. Since the freely rotating CF₃SO₂ moiety is not expected to seriously interact with the (Z)-methyl group, the origin of the F-strain in (Z)-3 is most probably attributed to the repulsion between the (Z)-methyl group and the ether oxygen atom on the bridgehead position. This presents a striking contrast to the previously reported system 1-OPNB, where the ether oxygen atom is unimportant with respect to the F-strain.^{2c}

In the more flexible 2-ethylidenebicyclo[3.2.2]non-1-yl system, the (Z)-5/(E)-5 rate ratio is 0.30, which should be compared with the (Z)-3/(E)-3 rate ratio of 217 for the rigid 2-ethylidenebicyclo[2.2.2]oct-1-yl system. This striking contrast reveals the importance of a rigid structure and coplanar arrangement of the methyl group and the reaction center for exerting the F-strain. Molecular mechanics calculations $[MM2(87)]^{13}$ showed that (Z)-5-OH is slightly more strained than (E)-5-OH by only 0.3 kcal/mol. Apparently, F-strain is markedly reduced in (Z)-5. Interestingly, AM1 calculations¹² indicated that the positive charge of (E)-5⁺ is conjugatively more delocalized than that of (Z)-5⁺: the net atomic charge on the cationic carbon is 0.353 for (E)-5⁺ and 0.363 for (Z)-5⁺. This might be partly responsible for the faster rate for (E)-5 than for (Z)-5. The much faster rates for (Z)-5 and (E)-5 than for 6 are explicable in terms of enhancement of allylic conjugation by the methyl substituent.¹⁴

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, and a grant from the Asahi Glass Foundation.

Supplementary Material Available: ¹³C NMR spectra for new substrates and ¹³C NMR spectra, analytical data, and melting points for their precursor alcohols (9 pages). Ordering information is given on any current masthead page.

⁽⁹⁾ Takeuchi, K.; Akiyama, F.; Ikai, K.; Shibata, T.; Kato, M. Tetrahedron Lett. 1988, 29, 873.

⁽¹⁰⁾ Vedejs, E.; Fuchs, P. L. J. Am. Chem. Soc. 1973, 95, 822.
(11) Takeuchi, K.; Kitagawa, I.; Akiyama, F.; Shibata, T.; Kato, M.;
Okamoto, K. Synthesis 1987, 612.
(12) Calculated through the AMPAC system: QCPE 527.

⁽¹³⁾ Obtained from QCPE.

⁽¹⁴⁾ We have previously shown that the allylic conjugation is approximately 50% attained in the incipient carbocation from 6.