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azaCope-Mannich reaction for stereocontrolled alkaloid 
construction. 
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Summary: The rate of ethanolysis at 25 "C of (2)-2- 
ethylidenebicyclo[2.2.2]0ct-l-y1 txiflate [(2)-3] is 217 times 
faster than that of its E isomer, whereas more flexible 
(2)-2-ethylidenebicyc10[3.2.2]non-l-y1 mesylate solvolyzes 
3.4 times slower than ita E isomer, indicating marked 
leaving-group strain in the ground state of (23-3, which is 
supported by MM2 calculations. 

In the ionization of a crowded molecule (R)&X, both 
the back strain (B-strain) among the three alkyl groups 
and the front strain (F-strain) between the leaving group 
X and the alkyl groups are relieved, resulting in en- 
hancement of solvolysis rates (Scheme These phe- 
nomena have constituted one of the major subjecta in 
computational chemi~t ry .~*~ 

In principle, when the R groups are made bulkier, not 
only B-strain but also F-strain increases.% Moreover, 
ionization may well cause an increase in strain between 
alkyl groups resulting from shortening of the C+-C bond 
in the carb~cation.~j*~ Therefore, the rate enhancement 
solely due to F-strain is generally difficult to realize. 
Changing the size of the leaving group X in (R)&X with 
varyin sizes of the R group achieved considerable suc- 

solvation should always be taken into account.@$6 Pre- 
viously, the tosylate leaving group was suggested to cause 
greater F-strain than the bromide in bridgehead deriva- 
tives: but this was questioned by recent calculations.& 
The most straightforward approach would be to design a 
system that shows a dramatic reactivity change upon 

cess.2b* f ti However, concomitant differential change in 
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c? 
minimum structural modification with the B-strain and 
the leaving group being unchanged. In this context, the 
most unambiguous case reported so far would be the 
fiiding that trans,truns,truns-perhydro-9b-phenalyl p -  
nitrobenzoate (1-OPNB) solvolyzes 2860 times faster than 
truns-Q-decalyl p-nitrobenzoate (2-OPNB) in 80% acetone 
at 25 "C.% Since the rate enhancement essentially vanishea 
in the chloride 141, the major F-strain in 1-OPNB has 
been postulated to exist between the carbonyl group 
(and/or the aryl group) and the ring system.%* 

Ar Ar 

1-OPNB 2-OPNB 

We now report another clear-cut example. The struc- 
tural modification employed in the present study is much 
simpler than annulation of 2-OPNB leading to 1-OPNB. 
We compared the rates of ethanolysis between (2)-2- 
ethylidenebicycl0[2.2.2]oct-l-y1 triflate [(a-31, the E iso- 
mer [ (E)-3] ,  and the 2-methylene homologue 4.' For a 
comparison, (23- and (E)-2-ethylidenebicycl0[3.2.2]non-l-y1 

(7) The new 8ubetra)eS (2)-3, (El-3, (2)-S, and (n-S were.prepUed an 
follows. A Wit@ ethyhdeuatiort of the tert-butyldmeth hlyl (BDMS) 
ether of l-hydroxybicyclo[2.2.2]octan-2-ones a f fo rdd  eolely (Z)-S- 
OBDMS ae an oil in 86% yield, which on olefm invenion by the phoe- 
phorus betaine methodlo gave (E)-8-OBDMS ae an oil in 69% yield. In 
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baeed on 'H NMR NOE difference experiments on irradiation of the 
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protons, whereae E ieomere showed NOEe on only the methyl p r ~ t o ~ .  
The BDMS ethers were degilylated by treatment with tetrabutyl- 
ammonium fluoride in THF and then converted to tritlate or meaylatea. 
The only impurity wan the correa nding alcohol. The 2-methylene 
homolgouee 4 and 6 were deacribegopreviody? 
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Table I. Rate Data of Ethenolyclis of 2-Ethylidene or 2-Methylene Bicyclic Bridgehead Compoundm' 
re1 rates at 25 O C  compdb temp, O C  k, 8-l AH', kcal/mol A S ,  eu 

m-3' 25.0 4.04 X 23.8 5.6 1365 217 
40.0 2.89 X loJd 

50.0 6.65 X lod' 

50.0 1.09 x l o d e s  
75.0 2.40 X lode# 

40.0 3.76 X 

(E)+ 25.0 1.86 x 104' 26.8 5.1 6.3 1 

48 25.0 2.96 x 10-'fa 27.1 2.3 1 

(2)-5' 25.0 5.49 x lO-'d 23.2 4.3 77 0.30 

(E)-5' 25.0 1.86 x lo-ad 21.6 1.3 259 1 

W 25.0 7.17 X lodes 24.3 -0.4 1 
40.0 1.11 x 10-2d 

50.0 1.86 x lo-"# 

OIn the presence of 0.025 M 2,64utidine. *All new compounds showed spectral data consistent with the proposed structures. 
Determined conductimetrically. Determined titrimetrically. f Extrapolated from data at other temperatures. 'Reference 9. 

mesylates and the 2-methylene homologue [ (21-5, (E)-5,  
and 6 ,  respectively] were also subjected to rate studies.' 
All the substrates gave exclusively the corresponding 
bridgehead ethyl ethers. The ethanolysis rate data are 
summarized in Table I. 

H3C H3C 

H3C& & & H 3 Z  & & 
OTf OTf OTf OMS Ms OMS 

(2)-3 (E)-3 4 (2)-5 (E)-5 6 

The rate of ethanolysis of (2)-2-ethylidenebicyclo- 
[2.2.2]oct-l-y1 triflate [(2)-3] is 217 times faster than that 
of the E isomer [ (E)-3]  at  25 OC. In contrast, the more 
flexible substrate (2)-2-ethylidenebicyclo[3.2.2]non-1-yl 
mesylate [(2)-5] solvolyzes 3.4 times slower than the E 
isomer [ (E)-5]  in ethanol a t  25 OC. 

Previously, we reported that allylic conjugation is es- 
sentially prohibited in the incipient carbocation from 2- 
methylenebicyclo[2.2.2]oct-1-yl triflate (4) for geometric 
reasons? We attribute a major part of the enhanced rate 
for (2)-3 as compared with (E)-3 to the relief of F-strain 
between the (&methyl substituent and the leaving group. 
Semiempirical molecular orbital calculations (AM1)12 on 
bridgehead carbocations (2)-3+ and (E)-3+ indicated that 
charge delocalization is similar in the two cations, being 
slightly smaller in the former: the net atomic charge on 
the cationic carbon is 0.403 for (2)-3+ and 0.402 for (E)-3+. 
On the other hand, molecular mechanics calculations 
[MM2(87)] l3 on bridgehead alcohols (2)-3-OH and (E)-3- 
OH as surrogates for the triflates showed that the former 
is more strained than the latter by 2.5 kcal/mol. About 
80% of this energy is explicable in terms of the sum of 

(9) Takeuchi, K.; Akiyama, F.; Ikai, K.; Shibata, T.; Kato, M. Tetra- 

(10) Vedejs, E.; Fuchs, P. L. J. Am. Chem. SOC. 1973,95,822. 
(11) Takeuchi, K.; Kitagawa, I.; Akiyama, F.; Shibata, T.; Kato, M.; 

hedron Lett. 1988,29,873. 

repulsion between the (%methyl group and the oxygen 
atom and thereby induced deformation of the skeleton. 
Since the freely rotating CF3S02 moiety is not expected 
to seriously interact with the (.%?-methyl group, the origin 
of the F-strain in (2)-3 is most probably attributed to the 
repulsion between the (2)-methyl group and the ether 
oxygen atom on the bridgehead position. This presents 
a striking contrast to the previously reported system 1- 
OPNB, where the ether oxygen atom is unimportant with 
respect to the F-strain.% 

In the more flexible 2-ethylidenebicyclo[3.2.2]non-1-yl 
system, the (2)-5/(E)-5 rate ratio is 0.30, which should be 
compared with the (Z)-3/(E)-3 rate ratio of 217 for the 
rigid 2-ethylidenebicyclo[2.2.2]oct-1-yl system. This 
striking contrast rev& the importance of a rigid structure 
and coplanar arrangement of the methyl group and the 
reaction center for exerting the F-strain. Molecular me- 
chanics calculations [MM2(87)]13 showed that (Z)-S-OH 
is slightly more strained than (E)-5-OH by only 0.3 
kcal/mol. Apparently, F-strain is markedly reduced in 
(2)-5. Interestingly, AM1 calculations12 indicated that the 
positive charge of (E)-5+ is conjugatively more delocalized 
than that of (2)-5+: the net atomic charge on the cationic 
carbon is 0.353 for (E)-5+ and 0.363 for (Z)-5+. This might 
be partly responsible for the faster rate for (E)-5 than for 
(23-5. The much faster rates for (2)-5 and (E)-5 than for 
6 are explicable in terms of enhancement of allylic conju- 
gation by the methyl s~bstituent. '~ 
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